Concurrent classification of EL ontologies

author: Yevgeny Kazakov, University of Ulm
published: Nov. 25, 2011,   recorded: October 2011,   views: 2601
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We describe an optimised consequence-based procedure for classification of ontologies expressed in a polynomial fragment ELHR+ of the OWL 2 EL profile. A distinguishing property of our procedure is that it can take advantage of multiple processors/cores, which increasingly prevail in computer systems. Our solution is based on a variant of the ‘given clause’ saturation algorithm for first-order theorem proving, where we assign derived axioms to ‘contexts’ within which they can be used and which can be processed independently.We describe an implementation of our procedure within the Java-based reasoner ELK. Our implementation is light-weight in the sense that an overhead of managing concurrent computations is minimal. This is achieved by employing lock-free data structures and operations such as ‘compare-and-swap’. We report on preliminary experimental results demonstrating a substantial speedup of ontology classification on multi-core systems. In particular, one of the largest and widely-used medical ontologies SNOMED CT can be classified in as little as 5 seconds.

See Also:

Download slides icon Download slides: iswc2011_kazakov_classification_01.pdf (1.4 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: