A Clustering-based Approach to Ontology Alignment

author: Achille Fokoue, IBM Research
published: Nov. 25, 2011,   recorded: October 2011,   views: 2944
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Ontology alignment is an important problem for the linked data web, as more and more ontologies and ontology instances get published for specific domains such as government and healthcare. A number of (semi-)automated alignment systems have been proposed in recent years. Most combine a set of similarity functions on lexical, semantic and structural features to align ontologies. Although these functions work well in many cases of ontology alignments, they fail to capture alignments when terms or structure varies vastly across ontologies. In this case, one is forced to rely on manual alignment. In this paper, we study whether it is feasible to re-use such expert provided ontology alignments for new alignment tasks. We focus in particular on many-to-one alignments, where the opportunity for re-use is feasible if alignments are stable. Specifically, we define the notion of a cluster as being made of multiple entities in the source ontology S that are mapped to the same entity in the target ontology T . We test the stability hypothesis that the formed clusters of source ontology are stable across alignments to different target ontologies. If this hypothesis is valid, the clusters of an ontology S, built from an existing alignment with an ontology T "can be effectively exploited to align S with a new ontology T". Evaluation on both manual and automated high-quality alignments show remarkable stability of clusters across ontology alignments in the financial domain and the healthcare and life sciences domain. Experimental evaluation also demonstrates the effectiveness of utilizing the stability of clusters in improving the alignment process in terms of precision and recall.

See Also:

Download slides icon Download slides: iswc2011_fokoue_ontology_01.pdf (443.0┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: