First-Order Models for Sequential Decision-Making

author: Scott Sanner, NICTA, Australia's ICT Research Centre of Excellence
published: Sept. 18, 2009,   recorded: July 2009,   views: 4033


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


In this talk I will discuss first-order models and algorithms for sequential decision-making, specifically those approaches that admit exact lifted solutions. The first emphasis of the talk will be on the insights that underlie these models and algorithms along with potential caveats for their practical application. The second emphasis of the talk will be on a variety of extensions of the first-order Markov decision process (MDP) framework such as the factored first-order MDP and the first-order partially observable MDP. The third emphasis of the talk will be on the algorithmic tricks-of-the-trade that allow the practical application of these models; this includes (a) useful data structures, (b) efficient solution techniques for first-order linear programs, (c) new techniques for first-order variable elimination, and (d) practical methods for maintaining compact, consistent first-order representations without theorem proving.

See Also:

Download slides icon Download slides: ilpmlgsrl09_sanner_fomsdm_01.pdf (665.5┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: