Bottom-Up Search and Transfer Learning in SRL

author: Raymond J. Mooney, Department of Computer Science, University of Texas at Austin
published: Sept. 18, 2009,   recorded: July 2009,   views: 4820


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


This talk addresses two important issues motivated by of our recent research in SRL. First, is the value of data-driven, "bottom-up" search in learning the structure of SRL models. Bottom-up induction has a long history in traditional ILP; however, its use in SRL has been somewhat limited. We review recent results on several structure-learning methods for Markov Logic Networks (MLNs) that highlight the value of bottom-up search. Second, is the value of transfer learning in reducing the data and computational demands of SRL. By inducing a predicate mapping between seemingly disparate domains, effective SRL models can be efficiently learned from very small amounts of in-domain training data. For example, by transferring a model learned from data about a CS department, we have induced reasonably accurate models for IMDB movie data given training data about only a single person.

See Also:

Download slides icon Download slides: ilpmlgsrl09_mooney_bustl_01.pdf (1.9 MB)

Download slides icon Download slides: ilpmlgsrl09_mooney_bustl_01.ppt (2.1 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: