en-de
en-es
en-fr
en-pt
en-sl
en
en-zh
0.25
0.5
0.75
1.25
1.5
1.75
2
Semantic Knowledge Bases from Web Sources
Published on Aug 23, 20117899 Views
The advent of knowledge-sharing communities such as Wikipedia and the progress in scalable information extraction from Web sources has enabled the automatic construction of large knowledge bases. Rece
Related categories
Chapter list
Outline for Part IV - 100:00
Outline for Part V - 100:00
Semantic Knowledge Basesfrom Web Sources00:00
Outline for Part II - 100:07
Outline for Part III00:17
RDFS-Ontologies00:34
There’s not only DBpedia& YAGO00:47
There’s a whole Web of Ontologies00:57
SPARQL01:26
Two Paradigms in Information Extraction (IE)01:56
SPARQL – Example - 102:01
All slides for download…02:03
URIs02:13
Outline - 102:32
URL- like URIs - 102:36
SPARQL – Example - 202:38
Labels03:02
SOFIE: Facts & Patterns Consistency - 103:42
SPARQL – More Features03:47
Entities & Classes04:05
Classes04:30
URL- like URIs - 204:44
Goal: Turn Web into Knowledge Base04:46
SPARQL: Extensions from W3C05:23
Binary Relations05:35
Entailment06:01
URL- like URIs - 306:18
SPARQL: Extensions from Research (1)06:29
Higher-arity Relations & Reasoning06:38
Approach: Knowledge Harvesting07:13
SOFIE: Facts & Patterns Consistency - 207:16
SPARQL: Extensions from Research (2) - 107:33
SOFIE Example07:45
Relations07:59
Outline for Part III08:22
SPARQL: Extensions from Research (2) - 208:25
Unary Relations08:29
WordNet Thesaurus - 109:21
Triples with URIs09:28
RDF+SPARQL: Systems09:29
WordNet Thesaurus - 210:06
Outline for Part IV - 210:17
OWL10:18
WordNet Thesaurus - 310:32
Why ranking is essential10:33
Knowledge for Intelligence10:43
Tapping on Wikipedia Categories - 111:17
Namespace Prefixes11:17
Soft Rules vs. Hard Constraints11:41
Extending Entities with Keywords12:02
Tapping on Wikipedia Categories - 212:03
Storing data12:20
Tapping on Wikipedia Categories - 312:27
OWL Undecidability12:35
Mapping: Wikipedia → WordNet - 112:45
Digression 1: Graph Authority Measures13:21
OWL-DL13:24
Mapping: Wikipedia → WordNet - 213:28
Cool URIs - 113:49
Application 1: Semantic Queries on Web - 114:13
Event Entities14:42
Pattern Harvesting, Revisited15:05
Keyword-Based Entity Search: Principles15:19
Mapping: Wikipedia → WordNet - 315:31
Digression 2: Language Models (LMs)15:50
Reification16:32
Mapping: Wikipedia → WordNet - 416:49
Language Models for Text: Example17:17
RDFS: Summary17:29
Cool URIs - 217:40
Language Models for Text: Smoothing17:49
We’re all one Graph18:10
PROSPERA Architecture18:10
YAGO Concept Mappings18:12
Outline for Part II - 218:12
Application 1: Semantic Queries on Web - 218:15
YAGO Consistency Checks18:37
Outline - 218:42
Cyc18:42
Application 1: Faceted Search18:42
Entity Search with LM Ranking18:43
Standard Vocabulary18:51
Application 2: Deep QA in NL19:09
Goal: Comprehensive & Consistent - 119:12
Cyc: Language19:24
Goal: Comprehensive & Consistent - 219:28
Dublin Core19:44
Learning More Mappings19:49
Outline for Part IV - 420:15
Trivially Parallel: Pattern Mining20:20
What makes a fact „good“?20:32
Creative Commons20:39
Cyc: Example of Content20:53
Long Tail of Class Instances - 121:27
Harder to Parallelize: Consistency Reasoning21:40
Long Tail of Class Instances - 222:14
Application 3: Machine Reading22:18
Cyc: Summary22:20
Schema.org23:06
WordNet23:35
PROSPERA Results23:41
WordNet: Content24:11
Outline - 324:16
Linked Data Problem24:22
Entity Disambiguation24:39
How can we implement this?24:43
Named-Entity Disambiguation24:43
Outline for Part III - 525:06
Linked Data Solution25:28
Open-Domain IE, History25:34
WordNet: Semantic Relations25:34
Individual Entity Disambiguation26:04
LMs: From Entities to Facts26:28
WordNet: Summary26:30
Open-domain IE, Methodology26:38
Mentions, Meanings, Mappings27:10
Wikipedia27:29
Joint Disambiguation27:33
The Linking Data Project27:39
Wikipedia: Articles and Attributes27:52
ReadTheWeb - 128:00
LMs for Triples and Triple Patterns28:22
The Linked Data Cloud28:27
AIDA – Disambiguating Names in YAGO228:50
Mention-Entity Graph - 129:08
ReadTheWeb - 229:24
Wikipedia: Summary29:26
Mention-Entity Graph - 229:32
Features for Disambiguation29:54
Outline for Part II - 329:56
Knowledge Bases from Wikipedia30:01
Basic idea30:14
ReadTheWeb - 331:16
LMs for Composite Queries31:22
Objective Function31:44
WikiNet31:51
NELL: Never-Ending Language Learning - 131:57
Joint Disambiguation as Graph Problem32:15
Extensions: Keywords - 132:18
Existing Ontologies32:25
Graph Algorithm32:49
WikiNet: Summary33:42
NELL: Never-Ending Language Learning - 233:50
Mention-Entity Graph - 333:59
DBpedia - 134:07
Outline for Part V - 234:13
Outline for Part III - 234:14
And the rest of the Web?34:32
Mention-Entity Graph - 434:34
DBpedia - 234:45
NELL Example Output - 134:49
Mention-Entity Graph - 534:54
Joint Mapping35:09
Extensions: Keywords - 235:11
NELL Example Output - 235:18
Binary Relations – Which Sources to Pick?35:39
DBpedia - 336:06
TextRunner36:13
Microdata36:14
DBpedia - 436:33
Picking Low-Hanging Fruit (First)36:41
AIDA Accurate Online Disambiguation - 136:53
LMs for Keyword-Augmented Queries36:53
AIDA Accurate Online Disambiguation - 236:57
Application 4: Annotation of Web Data36:59
Creating an Entity37:00
DBpedia - 537:03
Deterministic Pattern Matching37:10
YAGO37:33
TextRunner Example Ouput - 138:00
Naming an Entity38:04
YAGO: Classes38:06
Wrapper Induction38:17
TextRunner Example Ouput - 238:40
Application 4: Map Annotation38:44
YAGO: Consistency Checks38:47
Tapping on Web Tables - 138:49
Extensions: Query Relaxation38:53
Item Properties39:01
Spectrum of Machine Knowledge - 139:07
Item Properties with URIs39:35
Omnivore39:47
YAGO: Annotations40:00
Tapping on Web Tables - 240:06
Inner Nodes - 140:20
Recovering the Semantics of Web Tables40:31
Outline for Part III - 640:34
Spectrum of Machine Knowledge - 240:44
Higher-arity Relations –Space & Time40:45
YAGO: Summary40:51
Inner Nodes - 241:11
Microdata Summary41:27
French Marriage Problem (Revisited)41:54
Extensions: Diversification42:14
Relational Fact Extraction From Plain Text - 142:20
Facebook & Annotated HTML42:35
Spectrum of Machine Knowledge - 342:43
Freebase - 143:02
Challenge: Temporal Knowledge Harvesting43:42
Freebase - 244:09
Outline for Part IV - 444:16
Search Engines & Annotated HTML44:19
Relational Fact Extraction From Plain Text - 244:51
What we have seen so far45:08
This Tutorial45:28
Readings for Part I45:32
Difficult Dating45:33
DIPRE/Snowball45:37
Outline - 245:41
Other Query Interfaces45:50
Freebase: Community45:52
Implicit Dating - 146:11
Freebase: Summary46:38
Natural Language Queries46:40
Implicit Dating - 246:59
Outline for Part V - 347:15
TARSQI: ExtractingTime Annotations47:36
DIPRE/Snowball/QXtract47:40
PowerAqua (Open University, UK)47:44
Help from NLP: Dependency Parsing - 148:04
References48:05
Outline - 448:09
13 Relations between Time Intervals48:14
Outline for Part II - 448:26
Read the Web/NELL - 148:38
Possible Worlds in Time - 148:47
Summary49:19
Example: Querix (Uni Zurich)49:21
Spectrum of Machine Knowledge (1)49:26
Help from NLP: Dependency Parsing - 250:01
Help from NLP: Dependency Parsing - 350:23
Open-Domain Gathering of Facts51:04
Natural Language Queries51:13
Possible Worlds in Time - 251:52
Faceted Search51:56
Read the Web/NELL - 252:15
Declarative Extraction Frameworks - 152:44
Outline for Part III - 652:49
Faceted Search: http://dpbedia.neofonie.de/ - 152:56
Declarative Extraction Frameworks - 253:18
Faceted Search: http://dpbedia.neofonie.de/ - 253:32
Multilingual Lexical Knowledge53:37
Faceted Search: http://dpbedia.neofonie.de/ - 353:43
Pattern-Based Harvesting Summary54:07
Outline for Part III - 354:32
Faceted Search: http://dpbedia.neofonie.de/ - 454:58
Applications for Sequence Labeling55:03
Faceted Search: http://dpbedia.neofonie.de/ - 555:18
Read the Web/NELL - 355:23
Probabilistic Extraction Models55:42
Faceted Search: http://dpbedia.neofonie.de/ - 655:52
Knowledge from Many Languages55:53
Faceted Search: http://dpbedia.neofonie.de/ - 756:02
Faceted Search56:11
Wolfram Alpha56:15
Probabilistic Models for Sequence Labeling 56:31
Open Problems and Challenges in IE (I)56:41
Wolfram Alpha: Content56:54
Hidden Markov Models – HMMs57:22
AutoSPARQL: Learning Queries from Examples57:30
True Knowledge58:12
Open Problems and Challenges in IE (II)58:24
HMMs: Inference & Learning59:00
Wolfram Alpha & TrueKnowledge59:20
Active Learning from Examples59:31
Visual Query Formulation59:56
Spectrum of Machine Knowledge (2)01:00:18
iSPARQL, http://dbpedia.org/isparql/ - 101:00:35
Maximum Entropy Markov Models – MEMMs - 101:01:00
iSPARQL, http://dbpedia.org/isparql/ - 201:01:05
Visual Query Formulation01:01:15
Which interface is best (for casual users)?01:01:35
Maximum Entropy Markov Models – MEMMs - 201:01:58
Spectrum of Machine Knowledge (3)01:02:01
Outline for Part II - 501:02:11
References for Part II01:02:17
Outline - 301:02:21
ImageNet: Visual WordNet - 101:02:23
Directed Models and Label Bias01:02:51
Outline for Part IV - 501:03:25
Open Problems and Challenges – Part IV01:03:29
ImageNet: Visual WordNet - 201:03:47
Photos of Entities in the Long Tail - 101:04:06
Conditional Random Fields – CRFs01:05:07
Photos of Entities in the Long Tail - 201:06:24
CRF Extensions01:06:53
Outline for Part III - 401:08:17
KB Building: Achievements & Challenges01:08:45
More Ontological Rigor01:09:08
French Marriage Problem - 101:10:07
French Marriage Problem - 201:11:30
Reasoning about Fact Candidates01:12:23
KB Applications: Achievements & Challenges01:12:38
Markov Logic Networks - 101:13:40
Markov Logic Networks - 201:13:40
Markov Logic Networks - 301:16:49
Grand Challenge: Web-Scale KB Construction - 101:17:57
Markov Logic Networks - 401:19:06
Grand Challenge: Web-Scale KB Construction - 201:19:31
Markov Logic Networks - 501:19:46
Overall Take-Home01:20:06
Related Alternative Probabilistic Models01:20:24
FactorIE01:21:12
Outline - 501:21:31
The End01:21:32
Thanks01:21:44
Bidirectional Joint Segmentation & Disambiguation01:23:03
SOFIE: Reasoning for KB Growth01:25:30