Multiplicative Updates for L1-Regularized Linear and Logistic Regression

coauthor: Lawrence Saul, Department of Computer Science and Engineering, UC San Diego
published: Oct. 8, 2007,   recorded: September 2007,   views: 10011


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Multiplicative update rules have proven useful in many areas of machine learning. Simple to implement, guaranteed to converge, they account in part for the widespread popularity of algorithms such as nonnegative matrix factorization and Expectation-Maximization. In this paper, we show how to derive multiplicative updates for problems in L1-regularized linear and logistic regression. For L1–regularized linear regression, the updates are derived by reformulating the required optimization as a problem in nonnegative quadratic programming (NQP). The dual of this problem, itself an instance of NQP, can also be solved using multiplicative updates; moreover, the observed duality gap can be used to bound the error of intermediate solutions. For L1–regularized logistic regression, we derive similar updates using an iteratively reweighted least squares approach. We present illustrative experimental results and describe efficient implementations for large-scale problems of interest (e.g., with tens of thousands of examples and over one million features).

See Also:

Download slides icon Download slides: ida07_ljubljana_saul_lawrence.ppt (854.5 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: