Tree Augmented Naive Bayes for Regression Using Mixtures of Truncated Exponentials: Application to Higher Education Management

coauthor: Antonio Salmerón, Department of Statistics and Applied Mathematics, University of Almería
published: Oct. 8, 2007,   recorded: September 2007,   views: 6897


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


In this paper we explore the use of Tree Augmented Naive Bayes (TAN) in regression problems where some of the independent variables are continuous and some others are discrete. The proposed solution is based on the approximation of the joint distribution by a Mixture of Truncated Exponentials (MTE). The construction of the TAN structure requires the use of the conditional mutual information, which cannot be analytically obtained for MTEs. In order to solve this problem, we introduce an unbiased estimator of the conditional mutual information, based on Monte Carlo estimation. We test the performance of the proposed model in a real life context, related to higher education management, where regression problems with discrete and continuous variables are common. This work has been supported by the Spanish Ministry of Education and Science, project TIN2004-06204-C03-01 and by Junta de Andalucía, project P05-TIC-00276.

See Also:

Download slides icon Download slides: ida07_ljubljana_salmeron_antonio.pdf (1.3 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: