Parameter Learning for Bayesian Networks with Strict Qualitative Influences

author: Ad Feelders, Utrecht University
published: Oct. 8, 2007,   recorded: September 2007,   views: 3402


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We propose a new method for learning the parameters of a Bayesian network with qualitative influences. The proposed method aims to remove unwanted (context-specific) independencies that are created by the order-constrained maximum likelihood (OCML) estimator. This is achieved by averaging the OCML estimator with the fitted probabilities of a first-order logistic regression model. We show experimentally that the new learning algorithm does not perform worse than OCML, and resolves a large part of the independencies.

See Also:

Download slides icon Download slides: ida07_ljubljana_feelders_ad.pdf (123.3 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: