Graphical Models

author: Christian Borgelt, European Center for Soft Computing
published: Oct. 5, 2007,   recorded: September 2007,   views: 1243
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

 Watch videos:   (click on thumbnail to launch)

Watch Part 1
Part 1 1:15:21
!NOW PLAYING
Watch Part 2
Part 2 28:34
!NOW PLAYING

Description

In the last decade probabilistic graphical models -- in particular Bayes networks and Markov networks -- became very popular as tools for structuring uncertain knowledge about a domain of interest and for building knowledge-based systems that allow sound and efficient inferences about this domain. The lecture gives a brief introduction into the core ideas underlying graphical models, starting from their relational counterparts and highlighting the relation between independence and decomposition. Furthermore, the basics of model construction and evidence propagation are discussed, with an emphasis on join/junction tree propagation. A substantial part of the lecture is then devoted to learning graphical models from data, in which quantitative learning (parameter estimation) as well as the more complex qualitative or structural learning (model selection) are studied.

See Also:

Download slides icon Download slides: ida07_ljubljana_borgelt_christian.pdf (606.0 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: