Automatic Summarization of Events from Social Media

author: Freddy Chong Tat Chua, School of Information Systems, Singapore Management University
published: April 3, 2014,   recorded: July 2013,   views: 1670
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Social media services such as Twitter generate phenomenal volume of content for most real-world events on a daily basis. Digging through the noise and redundancy to understand the important aspects of the content is a very challenging task. We propose a search and summarization framework to extract relevant representative tweets from a time-ordered sample of tweets to generate a coherent and concise summary of an event. We introduce two topic models that take advantage of temporal correlation in the data to extract relevant tweets for summarization. The summarization framework has been evaluated using Twitter data on four real-world events. Evaluations are performed using Wikipedia articles on the events as well as using Amazon Mechanical Turk (MTurk) with human readers (MTurkers). Both experiments show that the proposed models outperform traditional LDA and lead to informative summaries.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: