CrowdE: Filtering Tweets for Direct Customer Engagements

author: Jilin Chen, IBM Almaden Research Center, IBM Research
published: April 3, 2014,   recorded: July 2013,   views: 1703
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Many consumer brands have customer relationship agents that directly engage opinionated consumers on social streams, such as Twitter. To help agents find opinionated consumers, social stream monitoring tools provide keyword-based filters, which are often too coarse-grained to be effective. In this work, we introduce CrowdE, a Twitter-based filtering system that helps agents find opinionated customers through brand-specific intelligent filters. To minimize per-brand effort in creating these brand-specific filters, the system used a common crowd-enabled process that creates the filters through machine learning over crowd-labeled tweets. We validated the quality of the crowd labels and the performance of the filter algorithms built from the labels. A user evaluation further showed that CrowdE's intelligent filters improved task performance and were generally preferred by users in comparison to keyword-based filters in current social stream monitoring tools.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: