Differential Adaptive Diffusion: Understanding Diversity and Learning Whom to Trust in Viral Marketing

author: Hossam Sharara, Department of Computer Science, University of Maryland
published: Aug. 18, 2011,   recorded: July 2011,   views: 3809


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Viral marketing mechanisms use the existing social network between customers to spread information about products and encourage product adoption. Existing viral marketing models focus on the dynamics of the diffusion process, however they typically: (a) only consider a single product campaign and (b) fail to model the evolution of the social network, as the trust between individuals changes over time, during the course of multiple campaigns. In this work, we propose an adaptive viral marketing model which captures: (1) multiple different product campaigns, (2) the diversity in customer preferences among different product categories, and (3) changing confidence in peers’ recommendations over time. By applying our model to a real-world network extracted from the Digg social news website, we provide insights into the effects of network dynamics on the different products’ adoption. Our experiments show that our proposed model outperforms earlier non-adaptive diffusion models in predicting future product adoptions. We also show how this model can be used to explore new viral marketing strategies that are more successful than classic strategies which ignore the dynamic nature of social networks.

See Also:

Download slides icon Download slides: icwsm2011_sharara_viral_01.pdf (1.2 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: