Characterizing Microblogs with Topic Models

author: Daniel Ramage, Stanford Natural Language Processing Group, Stanford University
published: June 29, 2010,   recorded: May 2010,   views: 808
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

As microblogging grows in popularity, services like Twitter are coming to support information gathering needs above and beyond their traditional roles as social networks. But most users’ interaction with Twitter is still primarily focused on their social graphs, forcing the often inappropriate conflation of “people I follow” with “stuff I want to read.” We characterize some information needs that the current Twitter interface fails to support, and argue for better representations of content for solving these challenges. We present a scalable implementation of a partially supervised learning model (Labeled LDA) that maps the content of the Twitter feed into dimensions. These dimensions correspond roughly to substance, style, status, and social characteristics of posts. We characterize users and tweets using this model, and present results on two information consumption oriented tasks.

See Also:

Download slides icon Download slides: icwsm2010_ramage_cmt_01.pdf (3.3 MB)

Download slides icon Download slides: icwsm2010_ramage_cmt_01.pptx (1.3 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: