Adaptive Stochastic Alternating Direction Method of Multipliers
published: Dec. 5, 2015, recorded: October 2015, views: 1888
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
The Alternating Direction Method of Multipliers (ADMM) has been studied for years. Traditional ADMM algorithms need to compute, at each iteration, an (empirical) expected loss function on all training examples, resulting in a computational complexity proportional to the number of training examples. To reduce the complexity, stochastic ADMM algorithms were proposed to replace the expected loss function with a random loss function associated with one uniformly drawn example plus a Bregman divergence term. The Bregman divergence, however, is derived from a simple 2nd-order proximal function, i.e., the half squared norm, which could be a suboptimal choice. In this paper, we present a new family of stochastic ADMM algorithms with optimal 2nd-order proximal functions, which produce a new family of adaptive stochastic ADMM methods. We theoretically prove that the regret bounds are as good as the bounds which could be achieved by the best proximal function that can be chosen in hindsight. Encouraging empirical results on a variety of real-world datasets confirm the effectiveness and efficiency of the proposed algorithms.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: