Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization

author: Yuchen Zhang, Department of Electrical Engineering and Computer Sciences, UC Berkeley
published: Dec. 5, 2015,   recorded: October 2015,   views: 1621
Categories

See Also:

Download slides icon Download slides: icml2015_zhang_risk_minimization_01.pdf (379.1┬áKB)


Help icon Streaming Video Help

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We consider a generic convex optimization problem associated with regularized empirical risk minimization of linear predictors. The problem structure allows us to reformulate it as a convex-concave saddle point problem. We propose a stochastic primal-dual coordinate method, which alternates between maximizing over one (or more) randomly chosen dual variable and minimizing over the primal variable. We also develop an extension to non-smooth and non-strongly convex loss functions, and an extension with better convergence rate on unnormalized data. Both theoretically and empirically, we show that the SPDC method has comparable or better performance than several state-of-the-art optimization methods.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: