Theory of Dual-sparse Regularized Randomized Reduction

author: Tianbao Yang, Computer Science Department, University of Iowa
published: Sept. 27, 2015,   recorded: July 2015,   views: 51
Categories

See Also:

Download slides icon Download slides: icml2015_yang_randomized_reduction_01.pdf (368.6┬áKB)


Help icon Streaming Video Help

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

In this paper, we study randomized reduction methods, which reduce high-dimensional features into low-dimensional space by randomized methods (e.g., random projection, random hashing), for large-scale high-dimensional classification. Previous theoretical results on randomized reduction methods hinge on strong assumptions about the data, e.g., low rank of the data matrix or a large separable margin of classification, which hinder their in broad domains. To address these limitations, we propose dual-sparse regularized randomized reduction methods that introduce a sparse regularizer into the reduced dual problem. Under a mild condition that the original dual solution is a (nearly) sparse vector, we show that the resulting dual solution is close to the original dual solution and concentrates on its support set. In numerical experiments, we present an empirical study to support the analysis and we also present a novel application of the dual-sparse randomized reduction methods to reducing the communication cost of distributed learning from large-scale high-dimensional data.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: