Robust Estimation of Transition Matrices in High Dimensional Heavy-tailed Vector Autoregressive Processes

author: Sheng Xu, Department of Biostatistics, Johns Hopkins University
published: Sept. 27, 2015,   recorded: July 2015,   views: 1888
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Gaussian vector autoregressive (VAR) processes have been extensively studied in the literature. However, Gaussian assumptions are stringent for heavy-tailed time series that frequently arises in finance and economics. In this paper, we develop a unified framework for modeling and estimating heavy-tailed VAR processes. In particular, we generalize the Gaussian VAR model by an elliptical VAR model that naturally accommodates heavy-tailed time series. Under this model, we develop a quantile-based robust estimator for the transition matrix of the VAR process. We show that the proposed estimator achieves parametric rates of convergence in high dimensions. This is the first work in analyzing heavy-tailed high dimensional VAR processes. As an application of the proposed framework, we investigate Granger causality in the elliptical VAR process, and show that the robust transition matrix estimator induces sign-consistent estimators of Granger causality. The empirical performance of the proposed methodology is demonstrated by both synthetic and real data. We show that the proposed estimator is robust to heavy tails, and exhibit superior performance in stock price prediction.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: