Sparse Subspace Clustering with Missing Entries

author: René Vidal, John Hopkins University
published: Sept. 27, 2015,   recorded: July 2015,   views: 2163

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We consider the problem of clustering incomplete data drawn from a union of subspaces. Classical subspace clustering methods are not applicable to this problem because the data are incomplete, while classical low-rank matrix completion methods may not be applicable because data in multiple subspaces may not be low rank. This paper proposes and evaluates two new approaches for subspace clustering and completion. The first one generalizes the sparse subspace clustering algorithm so that it can obtain a sparse representation of the data using only the observed entries. The second one estimates a suitable kernel matrix by assuming a random model for the missing entries and obtains the sparse representation from this kernel. Experiments on synthetic and real data show the advantages and disadvantages of the proposed methods, which all outperform the natural approach (low-rank matrix completion followed by sparse subspace clustering) when the data matrix is high-rank or the percentage of missing entries is large.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: