Context-based Unsupervised Data Fusion for Decision Making

author: Mihaela van der Schaar, Electrical Engineering Department, University of California, Los Angeles, UCLA
published: Sept. 27, 2015,   recorded: July 2015,   views: 1449

See Also:

Download slides icon Download slides: icml2015_van_der_schaar_decision_making_01.pdf (630.3┬áKB)

Help icon Streaming Video Help

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Big Data received from sources such as social media, in-stream monitoring systems, networks, and markets is often mined for discovering patterns, detecting anomalies, and making decisions or predictions. In distributed learning and real-time processing of Big Data, ensemble-based systems in which a fusion center (FC) is used to combine the local decisions of several classifiers, have shown to be superior to single expert systems. However, optimal design of the FC requires knowledge of the accuracy of the individual classifiers which, in many cases, is not available. Moreover, in many applications supervised training of the FC is not feasible since the true labels of the data set are not available. In this paper, we propose an unsupervised joint estimation-detection scheme to estimate the accuracies of the local classifiers as functions of data context and to fuse the local decisions of the classifiers. Numerical results show the dramatic improvement of the proposed method as compared with the state of the art approaches.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: