High Confidence Policy Improvement

author: Philip S. Thomas, School of Computer Science, Carnegie Mellon University
published: Dec. 5, 2015,   recorded: October 2015,   views: 1555
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We present a batch reinforcement learning (RL) algorithm that provides probabilistic guarantees about the quality of each policy that it proposes, and which has no hyper-parameter that requires expert tuning. Specifically, the user may select any performance lower-bound and confidence level and our algorithm will ensure that the probability that it returns a policy with performance below the lower bound is at most the specified confidence level. We then propose an incremental algorithm that executes our policy improvement algorithm repeatedly to generate multiple policy improvements. We show the viability of our approach with a simple 4 x 4 gridworld and the standard mountain car problem, as well as with a digital marketing application that uses real world data.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: