Spectral MLE: Top-K Rank Aggregation from Pairwise Comparisons

author: Changho Suh, KAIST - Korea Advanced Institute of Science and Technology
published: Sept. 27, 2015,   recorded: July 2015,   views: 90
Categories

See Also:

Download slides icon Download slides: icml2015_suh_spectral_mle_01.pdf (1.2┬áMB)


Help icon Streaming Video Help

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

This paper explores the preference-based top-K rank aggregation problem. Suppose that a collection of items is repeatedly compared in pairs, and one wishes to recover a consistent ordering that emphasizes the top-K ranked items, based on partially revealed preferences. We focus on the Bradley-Terry-Luce (BTL) model that postulates a set of latent preference scores underlying all items, where the odds of paired comparisons depend only on the relative scores of the items involved. We characterize the minimax limits on identifiability of top-K ranked items, in the presence of random and non-adaptive sampling. Our results highlight a separation measure that quantifies the gap of preference scores between the K-th and (K+1)-th ranked items. The minimum sample complexity required for reliable top-K ranking scales inversely with the separation measure irrespective of other preference distribution metrics. To approach this minimax limit, we propose a nearly linear-time ranking scheme, called Spectral MLE, that returns the indices of the top-K items in accordance to a careful score estimate. In a nutshell, Spectral MLE starts with an initial score estimate with minimal squared loss (obtained via a spectral method), and then successively refines each component with the assistance of coordinate-wise MLEs. Encouragingly, Spectral MLE allows perfect top-K item identification under minimal sample complexity. The practical applicability of Spectral MLE is further corroborated by numerical experiments.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: