Deep Edge-Aware Filters

author: Jimmy SJ. Ren, City University of Hong Kong
published: Dec. 9, 2015,   recorded: October 2015,   views: 3253

See Also:

Download slides icon Download slides: icml2015_ren_deep_filters_01.pdf (1.4┬áMB)

Help icon Streaming Video Help

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


There are many edge-aware filters varying in their construction forms and filtering properties. It seems impossible to uniformly represent and accelerate them in a single framework. We made the attempt to learn a big and important family of edge-aware operators from data. Our method is based on a deep convolutional neural network with a gradient domain training procedure, which gives rise to a powerful tool to approximate various filters without knowing the original models and implementation details. The only difference among these operators in our system becomes merely the learned parameters. Our system enables fast approximation for complex edge-aware filters and achieves up to 200x acceleration, regardless of their originally very different implementation. Fast speed can also be achieved when creating new effects using spatially varying filter or filter combination, bearing out the effectiveness of our deep edge-aware filters.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: