K-hyperplane Hinge-Minimax Classifier

author: Margarita Osadchy, Department of Computer Science, University of Haifa
published: Sept. 27, 2015,   recorded: July 2015,   views: 24
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We explore a novel approach to upper bound the misclassification error for problems with data comprising a small number of positive samples and a large number of negative samples. We assign the hinge-loss to upper bound the misclassification error of the positive examples and use the minimax risk to upper bound the misclassification error with respect to the worst case distribution that generates the negative examples. This approach is computationally appealing since the majority of training examples (belonging to the negative class) are represented by the statistics of their distribution, in contrast to kernel SVM which produces a very large number of support vectors in such settings. We derive empirical risk bounds for linear and non-linear classification and show that they are dimensionally independent and decay as 1/m−−√ for m samples. We propose an efficient algorithm for training an intersection of finite number of hyperplane and demonstrate its effectiveness on real data, including letter and scene recognition.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: