Controversy in mechanistic modelling with Gaussian processes

author: Dirk Husmeier, School of Mathematics and Statistics, University of Glasgow
author: Benn Macdonald, School of Mathematics and Statistics, University of Glasgow
published: Sept. 27, 2015,   recorded: July 2015,   views: 2013

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Parameter inference in mechanistic models based on non-affine differential equations is computationally onerous, and various faster alternatives based on gradient matching have been proposed. A particularly promising approach is based on nonparametric Bayesian modelling with Gaussian processes, which exploits the fact that a Gaussian process is closed under differentiation. However, two alternative paradigms have been proposed. The first paradigm, proposed at NIPS 2008 and AISTATS 2013, is based on a product of experts approach and a marginalization over the derivatives of the state variables. The second paradigm, proposed at ICML 2014, is based on a probabilistic generative model and a marginalization over the state variables. The claim has been made that this leads to better inference results. In the present article, we offer a new interpretation of the second paradigm, which highlights the underlying assumptions, approximations and limitations. In particular, we show that the second paradigm suffers from an intrinsic identifiability problem, which the first paradigm is not affected by.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: