Support Matrix Machines

author: Luo Luo, Department of Computer Science and Engineering, Shanghai Jiao Tong University
published: Sept. 27, 2015,   recorded: July 2015,   views: 2425

See Also:

Download slides icon Download slides: icml2015_luo_support_matrix_machines_01.pdf (505.4┬áKB)

Help icon Streaming Video Help

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


In many classification problems such as electroencephalogram (EEG) classification and image classification, the input features are naturally represented as matrices rather than vectors or scalars. In general, the structure information of the original feature matrix is useful and informative for data analysis tasks such as classification. One typical structure information is the correlation between columns or rows in the feature matrix. To leverage this kind of structure information, we propose a new classification method that we call support matrix machine (SMM). Specifically, SMM is defined as a hinge loss plus a so-called spectral elastic net penalty which is a spectral extension of the conventional elastic net over a matrix. The spectral elastic net enjoys a property of grouping effect, i.e., strongly correlated columns or rows tend to be selected altogether or not. Since the optimization problem for SMM is convex, this encourages us to devise an alternating direction method of multipliers algorithm for solving the problem. Experimental results on EEG and face image classification data show that our model is more robust and efficient than the state-of-the-art methods.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: