A Convex Exemplar-based Approach to MAD-Bayes Dirichlet Process Mixture Models

author: Jimmy Xin Lin, Department of Computer Science, University of Texas at Austin
published: Dec. 5, 2015,   recorded: October 2015,   views: 1558
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

MAD-Bayes (MAP-based Asymptotic Derivations) has been recently proposed as a general technique to derive scalable algorithm for Bayesian Nonparametric models. However, the combinatorial nature of objective functions derived from MAD-Bayes results in hard optimization problem, for which current practice employs heuristic algorithms analogous to k-means to find local minimum. In this paper, we consider the exemplar-based version of MAD-Bayes formulation for DP and Hierarchical DP (HDP) mixture model. We show that an exemplar-based MAD-Bayes formulation can be relaxed to a convex structural-regularized program that, under cluster-separation conditions, shares the same optimal solution to its combinatorial counterpart. An algorithm based on Alternating Direction Method of Multiplier (ADMM) is then proposed to solve such program. In our experiments on several benchmark data sets, the proposed method finds optimal solution of the combinatorial problem and significantly improves existing methods in terms of the exemplar-based objective.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: