Structural Maxent Models

author: Vitaly Kuznetsov, Courant Institute of Mathematical Sciences, New York University
published: Sept. 27, 2015,   recorded: July 2015,   views: 40
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

We present a new class of density estimation models, Structural Maxent models, with feature functions selected from possibly very complex families. The design of our models is motivated by data-dependent convergence bounds and benefits from new data-dependent learning bounds expressed in terms of the Rademacher complexities of the sub-families composing the family of features considered. We prove a duality theorem, which we use to derive our Structural Maxent algorithm. We give a full description of our algorithm, including the details of its derivation and report the results of several experiments demonstrating that its performance compares favorably to that of existing regularized Maxent. We further similarly define conditional Structural Maxent models for multi-class classification problems. These are conditional probability models making use of possibly complex feature families. We also prove a duality theorem for these models which shows the connection between these models and existing binary and multi-class deep boosting algorithms.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: