An Empirical Exploration of Recurrent Network Architectures

author: Rafal Jozefowicz, Google, Inc.
published: Dec. 5, 2015,   recorded: October 2015,   views: 159
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

The Recurrent Neural Network (RNN) is an extremely powerful sequence model that is often difficult to train. The Long Short-Term Memory (LSTM) is a specific RNN architecture whose design makes it much easier to train. While wildly successful in practice, the LSTM’s architecture appears to be ad-hoc so it is not clear if it is optimal, and the significance of its individual components is unclear. In this work, we aim to determine whether the LSTM architecture is optimal or whether much better architectures exist. We conducted a thorough architecture search where we evaluated over ten thousand different RNN architectures, and identified an architecture that outperforms both the LSTM and the recently-introduced Gated Recurrent Unit (GRU) on some but not all tasks. We found that adding a bias of 1 to the LSTM’s forget gate closes the gap between the LSTM and the GRU.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: