Faster cover trees

author: Mike Izbicki, Department of Computer Science and Engineering, University of California, Riverside
published: Sept. 27, 2015,   recorded: July 2015,   views: 1491

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


The cover tree data structure speeds up exact nearest neighbor queries over arbitrary metric spaces. This paper makes cover trees even faster. In particular, we provide (1) a simpler definition of the cover tree that reduces the number of nodes from O(n) to exactly n, (2) an additional invariant that makes queries faster in practice, (3) algorithms for constructing and querying the tree in parallel on multiprocessor systems, and (4) a more cache efficient memory layout. On standard benchmark datasets, we reduce the number of distance computations by 10–50%. On a large-scale bioinformatics dataset, we reduce the number of distance computations by 71%. On a large-scale image dataset, our parallel algorithm with 16 cores reduces tree construction time from 3.5 hours to 12 minutes.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: