JUMP-Means: Small-Variance Asymptotics for Markov Jump Processes

author: Jonathan Huggins, Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, MIT
published: Dec. 5, 2015,   recorded: October 2015,   views: 8
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Markov jump processes (MJPs) are used to model a wide range of phenomenon from disease progression to RNA path folding. However, existing methods suffer from a number of shortcomings: degenerate trajectories in the case of ML estimation of parametric models and poor inferential performance in the case of nonparametric models. We take a small-variance asymptotics (SVA) approach to overcome these limitations. We derive the small-variance asymptotics for parametric and nonparametric MJPs for both directly observed and hidden state models. In the parametric case we obtain a novel objective function which leads to non-degenerate trajectories. To derive the nonparametric version we introduce the gamma-gamma process, a novel extension to the gamma-exponential process. We propose algorithms for each of these formulations, which we call \emph{JUMP-means}. Our experiments demonstrate that JUMP-means is competitive with or outperforms widely used MJP inference approaches in terms of both speed and reconstruction accuracy.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: