Risk and Regret of Hierarchical Bayesian Learners

author: Jonathan Huggins, Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, MIT
published: Sept. 27, 2015,   recorded: July 2015,   views: 13
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Common statistical practice has shown that the full power of Bayesian methods is not realized until hierarchical priors are used, as these allow for greater "robustness" and the ability to "share statistical strength." Yet it is an ongoing challenge to provide a learning-theoretically sound formalism of such notions that: offers practical guidance concerning when and how best to utilize hierarchical models; provides insights into what makes for a good hierarchical prior; and, when the form of the prior has been chosen, can guide the choice of hyperparameter settings. We present a set of analytical tools for understanding hierarchical priors in both the online and batch learning settings. We provide regret bounds under log-loss, which show how certain hierarchical models compare, in retrospect, to the best single model in the model class. We also show how to convert a Bayesian log-loss regret bound into a Bayesian risk bound for any bounded loss, a result which may be of independent interest. Risk and regret bounds for Student's t and hierarchical Gaussian priors allow us to formalize the concepts of "robustness" and "sharing statistical strength." Priors for feature selection are investigated as well. Our results suggest that the learning-theoretic benefits of using hierarchical priors can often come at little cost on practical problems.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: