PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent

author: Cho-Jui Hsieh, Department of Computer Science, University of Texas at Austin
published: Dec. 5, 2015,   recorded: October 2015,   views: 1762

See Also:

Download slides icon Download slides: icml2015_hsieh_stochastic_dual_01.pdf (1.3┬áMB)

Help icon Streaming Video Help

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Stochastic Dual Coordinate Descent (DCD) is one of the most efficient ways to solve the family of L2-regularized empirical risk minimization problems, including linear SVM, logistic regression, and many others. The vanilla implementation of DCD is quite slow; however, by maintaining primal variables while updating dual variables, the time complexity of DCD can be significantly reduced. Such a strategy forms the core algorithm in the widely-used LIBLINEAR package. In this paper, we parallelize the DCD algorithms in LIBLINEAR. In recent research, several synchronized parallel DCD algorithms have been proposed, however, they fail to achieve good speedup in the shared memory multi-core setting. In this paper, we propose a family of parallel asynchronous stochastic dual coordinate descent algorithms (PASSCoDe). Each thread repeatedly selects a random dual variable and conducts coordinate updates using the primal variables that are stored in the shared memory. We analyze the convergence properties of DCD when different locking/atomic mechanisms are applied. For implementation with atomic operations, we show linear convergence under mild conditions. For implementation without any atomic operations or locking, we present a novel error analysis for PASSCoDe under the multi-core environment, showing that the converged solution is the exact solution for a primal problem with a perturbed regularizer. Experimental results show that our methods are much faster than previous parallel coordinate descent solvers.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: