Moderated and Drifting Linear Dynamical Systems

author: Jinyan Guan, Department of Computer Science and Engineering, Arizona State University
published: Sept. 27, 2015,   recorded: July 2015,   views: 1750

See Also:

Download slides icon Download slides: icml2015_guan_linear_dynamical_systems_01.pdf (1.7┬áMB)

Help icon Streaming Video Help

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We consider linear dynamical systems, particularly coupled linear oscillators, where the parameters represent meaningful values in a domain theory and thus learning what affects them contributes to explanation. Rather than allow perturbations of latent states, we assume that temporal variation beyond noise is explained by parameter drift, and variation across coupled systems is a function of moderating variables. This change of focus reduces opportunities for efficient inference, and we propose sampling procedures to learn and fit the models. We test our approach on a real dataset of physiological measures of heterosexual couples engaged in a conversation about a potentially emotional topic, with body mass index (BMI) being considered as a moderator. We evaluate several models on their ability to predict future conversation dynamics (the last 20% of the data for each test couple), with shared parameters being learned using held out data. As proof of concept, we validate the hypothesis that BMI affects the conversation dynamic in the experimentally chosen topic.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: