Causal Inference by Identification of Vector Autoregressive Processes with Hidden Components

author: Philipp Geiger, Max Planck Institute for Intelligent Systems, Max Planck Institute
published: Dec. 5, 2015,   recorded: October 2015,   views: 1620

See Also:

Download slides icon Download slides: icml2015_geiger_hidden_components_01.pdf (231.0 KB)

Help icon Streaming Video Help

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


A widely applied approach to causal inference from a time series X, often referred to as “(linear) Granger causal analysis”, is to simply regress present on past and interpret the regression matrix B^ causally. However, if there is an unmeasured time series Z that influences X, then this approach can lead to wrong causal conclusions, i.e., distinct from those one would draw if one had additional information such as Z. In this paper we take a different approach: We assume that X together with some hidden Z forms a first order vector autoregressive (VAR) process with transition matrix A, and argue why it is more valid to interpret A causally instead of B^. Then we examine under which conditions the most important parts of A are identifiable or almost identifiable from only X. Essentially, sufficient conditions are (1) non-Gaussian, independent noise or (2) no influence from X to Z. We present two estimation algorithms that are tailored towards conditions (1) and (2), respectively, and evaluate them on synthetic and real-world data. We discuss how to check the model using X.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: