Online Learning of Eigenvectors

author: Dan Garber, Technion - Israel Institute of Technology
published: Dec. 5, 2015,   recorded: October 2015,   views: 1577

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Computing the leading eigenvector of a symmetric real matrix is a fundamental primitive of numerical linear algebra with numerous applications. We consider a natural online extension of the leading eigenvector problem: a sequence of matrices is presented and the goal is to predict for each matrix a unit vector, with the overall goal of competing with the leading eigenvector of the cumulative matrix. Existing regret-minimization algorithms for this problem either require to compute an \textit{eigen decompostion} every iteration, or suffer from a large dependency of the regret bound on the dimension. In both cases the algorithms are not practical for large scale applications. In this paper we present new algorithms that avoid both issues. On one hand they do not require any expensive matrix decompositions and on the other, they guarantee regret rates with a mild dependence on the dimension at most. In contrast to previous algorithms, our algorithms also admit implementations that enable to leverage sparsity in the data to further reduce computation. We extend our results to also handle non-symmetric matrices.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: