Scalable Model Selection for Large-Scale Factorial Relational Models

author: Lu Feng, NEC Laboratories America, Inc.
published: Sept. 27, 2015,   recorded: July 2015,   views: 42
Categories

See Also:

Download slides icon Download slides: icml2015_feng_factorial_relational_models_01.pdf (1004.1┬áKB)


Help icon Streaming Video Help

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

With a growing need to understand large-scale networks, factorial relational models, such as binary matrix factorization models (BMFs), have become important in many applications. Although BMFs have a natural capability to uncover overlapping group structures behind network data, existing inference techniques have issues of either high computational cost or lack of model selection capability, and this limits their applicability. For scalable model selection of BMFs, this paper proposes stochastic factorized asymptotic Bayesian (sFAB) inference that combines concepts in two recently-developed techniques: stochastic variational inference (SVI) and FAB inference. sFAB is a highly-efficient algorithm, having both scalability and an inherent model selection capability in a single inference framework. Empirical results show the superiority of sFAB/BMF in both accuracy and scalability over state-of-the-art inference methods for overlapping relational models.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: