Exponential Integration for Hamiltonian Monte Carlo

author: Wei-Lun Chao, Computer Science Department, University of Southern California
published: Dec. 5, 2015,   recorded: October 2015,   views: 1491
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We investigate numerical integration of ordinary differential equations (ODEs) for Hamiltonian Monte Carlo (HMC). High-quality integration is crucial for designing efficient and effective proposals for HMC. While the standard method is leapfrog (Stormer-Verlet) integration, we propose the use of an exponential integrator, which is robust to stiff ODEs with highly-oscillatory components. This oscillation is difficult to reproduce using leapfrog integration, even with carefully selected integration parameters and preconditioning. Concretely, we use a Gaussian distribution approximation to segregate stiff components of the ODE. We integrate this term analytically for stability and account for deviation from the approximation using variation of constants. We consider various ways to derive Gaussian approximations and conduct extensive empirical studies applying the proposed “exponential HMC” to several benchmarked learning problems. We compare to state-of-the-art methods for improving leapfrog HMC and demonstrate the advantages of our method in generating many effective samples with high acceptance rates in short running times.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: