Active Nearest Neighbors in Changing Environments

author: Christopher Berlind, College of Computing, Georgia Institute of Technology
published: Sept. 27, 2015,   recorded: July 2015,   views: 1522

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


While classic machine learning paradigms assume training and test data are generated from the same process, domain adaptation addresses the more realistic setting in which the learner has large quantities of labeled data from some source task but limited or no labeled data from the target task it is attempting to learn. In this work, we give the first formal analysis showing that using active learning for domain adaptation yields a way to address the statistical challenges inherent in this setting. We propose a novel nonparametric algorithm, ANDA, that combines an active nearest neighbor querying strategy with nearest neighbor prediction. We provide analyses of its querying behavior and of finite sample convergence rates of the resulting classifier under covariate shift. Our experiments show that ANDA successfully corrects for dataset bias in multi-class image categorization.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: