A Linear Dynamical System Model for Text

author: David Belanger, Department of Computer Science, University of Massachusetts Amherst
published: Dec. 5, 2015,   recorded: October 2015,   views: 25
Categories

See Also:

Download slides icon Download slides: icml2015_belanger_dynamical_system_01.pdf (20.0 MB)


Help icon Streaming Video Help

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Low dimensional representations of words allow accurate NLP models to be trained on limited annotated data. While most representations ignore words’ local context, a natural way to induce context-dependent representations is to perform inference in a probabilistic latent-variable sequence model. Given the recent success of continuous vector space word representations, we provide such an inference procedure for continuous states, where words’ representations are given by the posterior mean of a linear dynamical system. Here, efficient inference can be performed using Kalman filtering. Our learning algorithm is extremely scalable, operating on simple co-occurrence counts for both parameter initialization using the method of moments and subsequent iterations of EM. In our experiments, we employ our inferred word embeddings as features in standard tagging tasks, obtaining significant accuracy improvements. Finally, the Kalman filter updates can be seen as a linear recurrent neural network. We demonstrate that using the parameters of our model to initialize a non-linear recurrent neural network language model reduces its training time by a day and yields lower perplexity.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: