Gidoc

author: Jesus Andres-Ferrer, Technical University of Valencia (UPV)
published: July 20, 2010,   recorded: June 2010,   views: 86
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Transcription of handwritten text in (old) documents is an important, time-consuming task for digital libraries. It might be carried out by first processing all document images off-line, and then manually supervising system transcriptions to edit incorrect parts. However, current techniques for automatic page layout analysis, text line detection and handwriting recognition are still far from perfect, and thus post-editing system output is not clearly better than simply ignoring it.

A more effective approach to transcribe old text documents is to follow an interactive- predictive paradigm in which both, the system is guided by the user, and the user is assisted by the system to complete the transcription task as efficiently as possible. Following this approach, a system prototype called GIDOC (Gimp-based Interactive transcription of old text DOCuments) has been developed to provide user-friendly, integrated support for interactive-predictive layout analysis, line detection and handwriting transcription.

GIDOC is designed to work with (large) collections of homogeneous documents, that is, of similar structure and writing styles. They are annotated sequentially, by (par- tially) supervising hypotheses drawn from statistical models that are constantly updated with an increasing number of available annotated documents. And this is done at different annotation levels. For instance, at the level of page layout analysis, GIDOC uses a novel text block detection method in which conventional, memoryless techniques are improved with a “history” model of text block positions. Similarly, at the level of text line image transcription, GIDOC includes a handwriting recognizer which is steadily improved with a growing number of (partially) supervised transcriptions.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: