Learning with similarity functions

author: Maria-Florina Balcan, College of Computing, Georgia Institute of Technology
published: July 20, 2010,   recorded: June 2010,   views: 12785


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Kernel functions have become an extremely popular tool in machine learning, with many applications and an attractive theory. This theory views a kernel as performing an implicit mapping of data points into a possibly very high dimensional space, and describes a kernel function as being good for a given learning problem if data is separable by a large margin in that implicit space. In this talk I will describe an alternative, more general, theory of learning with similarity functions (i.e., sufficient conditions for a similarity function to allow one to learn well) that does not require reference to implicit spaces, and does not require the function to be positive semi-definite (or even symmetric). In particular, I will describe a notion of a good similarity function for a given learning problem that (a) is fairly natural and intuitive (it does not require an implicit space and allows for functions that are not positive semi-definite), (b) is a sufficient condition for learning well, and (c) strictly generalizes the notion of a large-margin kernel function in that any such kernel is also a good similarity function, though not necessarily vice-versa.

See Also:

Download slides icon Download slides: icml2010_balcan_lwsf_01-1.pdf (298.6 KB)

Download slides icon Download slides: icml2010_balcan_lwsf_01.ppt (1.0 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: