Prototype Vector Machine for Large Scale Semi-Supervised Learning

author: Kai Zhang, Department of Computer and Information Sciences, Temple University
published: Aug. 26, 2009,   recorded: June 2009,   views: 147

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Practical data analysis and mining rarely falls exactly into the supervised learning scenario. Rather, the growing amount of unlabelled data from various scientific domains poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computational intensiveness of graph-based SSL arises largely from the manifold or graph regularization, which may in turn lead to large models that are difficult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highly scalable, graph-based algorithm for large-scale SSL. Our key innovation is the use of “prototypes vectors” for efficient approximation on both the graph-based regularizer and the model representation. The choice of prototypes are grounded upon two important criterion: they not only perform effective low- rank approximation on the kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. These criterion lead to consistent prototype selection scheme, allowing us to design a unified algorithm (PVM) that demonstrates encouraging performance while at the same time possessing appealing scaling properties (empirically linear with sample size).

See Also:

Download slides icon Download slides: icml09_zhang_pvmlsssl_01.pdf (568.1 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: