Function Factorization Using Warped Gaussian Processes

author: Mikkel N. Schmidt, Department of Engineering, University of Cambridge
published: Aug. 26, 2009,   recorded: June 2009,   views: 240
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We introduce a new approach to non-linear regression called function factorization, that is suitable for problems where an output variable can reasonably be modeled by a number of multiplicative interaction terms between non-linear functions of the inputs. The idea is to approximate a complicated function on a high-dimensional space by the sum of products of simpler functions on lower-dimensional subspaces. Function factorization can be seen as a generalization of matrix and tensor factorization methods, in which the data are approximated by the sum of outer products of vectors. We present a non-parametric Bayesian approach to function factorization where the priors over the factorizing functions are warped Gaussian processes, and we do inference using Hamiltonian Markov chain Monte Carlo. We demonstrate the superior predictive performance of the method on a food science data set compared to Gaussian process regression and tensor factorization using PARAFAC and GEMANOVA models.

See Also:

Download slides icon Download slides: icml09_schmidt_ffuw_01.pdf (1006.2┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: