An Accelerated Gradient Method for Trace Norm Minimization

author: Shuiwang Ji, School of Electrical Engineering and Computer Science, Washington State University
published: Aug. 26, 2009,   recorded: June 2009,   views: 308
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We consider the minimization of a smooth loss function regularized by the trace norm of the matrix variable. Such formulation finds applications in many machine learning tasks including multi-task learning, matrix classification, and matrix completion. The standard semidefinite programming formulation for this problem is computationally expensive. In addition, due to the non-smoothness nature of the trace norm, the optimal first-order black-box method for solving such class of problems converges as O(1/sqrt(k)), where k is the iteration counter. In this paper, we exploit the special structure of the trace norm, based on which we propose an extended gradient algorithm that converges as O(1/k). We further propose an accelerated gradient algorithm, which achieves the optimal convergence rate of O(1/k^2) for smooth problems. Experiments on multi-task learning problems demonstrate the efficiency of the proposed algorithms.

See Also:

Download slides icon Download slides: icml09_ji_agmt_01.pdf (268.6┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: