Trajectory Prediction: Learning to Map Situations to Robot Trajectories

author: Nikolay Jetchev, Machine Learning and Intelligent Data Analysis Group, TU Berlin
published: Aug. 26, 2009,   recorded: June 2009,   views: 254
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Trajectory planning and optimization is a fundamental problem in articulated robotics. Algorithms used typically for this problem compute optimal trajectories from scratch in a new situation. In effect, extensive data is accumulated containing situations together with the respective optimized trajectories - but this data is in practice hardly exploited. The aim of this paper is to learn from this data. Given a new situation we want to predict a suitable trajectory which only needs minor refinement by a conventional optimizer. Our approach has two essential ingredients. First, to generalize from previous situations to new ones we need an appropriate situation descriptor - we propose a sparse feature selection approach to find such well-generalizing features of situations. Second, the transfer of previously optimized trajectories to a new situation should not be made in joint angle space - we propose a more efficient task space transfer of old trajectories to new situations. Experiments on trajectory optimization for a simulated humanoid reaching problem show that we can predict reasonable motion prototypes in new situations for which the refinement is much faster than an optimization from scratch.

See Also:

Download slides icon Download slides: icml09_jetchev_tpl_01.pdf (3.9┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: