Learning Linear Dynamical Systems without Sequence Information

author: Tzu-Kuo Huang, The Auton Lab, School of Computer Science, Carnegie Mellon University
published: Aug. 26, 2009,   recorded: June 2009,   views: 216
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Virtually all methods of learning dynamic systems from data start from the same basic assumption: that the learning algorithm will be provided with a sequence, or trajectory, of data generated from the dynamic system. In this paper we consider the case where the data is not sequenced. The learning algorithm is presented a set of data points from the system's operation but with no temporal ordering. The data are simply drawn as individual disconnected points.

While making this assumption may seem absurd at first glance, we observe that many scientific modeling tasks have exactly this property. In this paper we restrict our attention to learning linear, discrete time models. We propose several algorithms for learning these models based on optimizing approximate likelihood functions and test the methods on several synthetic data sets.

See Also:

Download slides icon Download slides: icml09_huang_llds_01.pdf (1.1┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: