The Adaptive k-Meteorologists Problem and Its Application to Structure Learning and Feature Selection in Reinforcement Learning

author: Carlos Diuk, Department of Computer Science, Rutgers, The State University of New Jersey
published: Aug. 26, 2009,   recorded: June 2009,   views: 4223


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


The purpose of this paper is three-fold. First, we formalize and study a problem of learning probabilistic concepts in the recently proposed KWIK framework. We give details of an algorithm, known as the Adaptive k-Meteorologists Algorithm, analyze its sample complexity upper bound, and give a matching lower bound. Second, this algorithm is used to create a new reinforcement learning algorithm for factoredstate problems that enjoys significant improvement over the previous state-of-the-art algorithm. Finally, we apply the Adaptive k-Meteorologists Algorithm to remove a limiting assumption in an existing reinforcement-learning algorithm. The effectiveness of our approaches are demonstrated empirically in a couple benchmark domains as well as a robotics navigation problem.

See Also:

Download slides icon Download slides: icml09_diuk_akmp_01.ppt (1.3┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: