Training SVM with Indefinite Kernels

author: Jieping Ye, Department of Electrical Engineering and Computer Science, University of Michigan
published: Aug. 6, 2008,   recorded: July 2008,   views: 359
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Similarity matrices generated from many applications may not be positive semidefinite, and hence can't fit into the kernel machine framework. In this paper, we study the problem of training support vector machines with an indefinite kernel. We consider a regularized SVM formulation, in which the indefinite kernel matrix is treated as a noisy observation of some unknown positive semidefinite one (proxy kernel) and the support vectors and the proxy kernel can be computed simultaneously. We propose a semi-infinite quadratically constrained linear program formulation for the optimization, which can be solved iteratively to find a global optimum solution. We further propose to employ an additional pruning strategy, which significantly improves the efficiency of the algorithm, while retaining the convergence property of the algorithm. In addition, we show the close relationship between the proposed formulation and multiple kernel learning. Experiments on a collection of benchmark data sets demonstrate the efficiency and effectiveness of the proposed algorithm.

See Also:

Download slides icon Download slides: icml08_ye_tsvm_01.pdf (282.9┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: