Learning to Classify with Missing and Corrupted Features

author: Ohad Shamir, Faculty of Mathematics and Computer Science, Weizmann Institute of Science
published: Aug. 7, 2008,   recorded: July 2008,   views: 211

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

After a classifier is trained using a machine learning algorithm and put to use in a real world system, it often faces noise which did not appear in the training data. Particularly, some subset of features may be missing or may become corrupted. We present two novel machine learning techniques that are robust to this type of classification-time noise. First, we solve an approximation to the learning problem using linear programming. We analyze the tightness of our approximation and prove statistical risk bounds for this approach. Second, we define the online-learning variant of our problem, address this variant using a modified Perceptron, and obtain a statistical learning algorithm using an online-to-batch technique. We conclude with a set of experiments that demonstrate the effectiveness of our algorithms.

See Also:

Download slides icon Download slides: icml08_shamir_lcm_01.pdf (557.6┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: