Accurate Max-margin Training for Structured Output Spaces

author: Sunita Sarawagi, Indian Institute of Technology Madras
published: July 28, 2008,   recorded: July 2008,   views: 5014


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Tsochantaridis et al 2005 proposed two formulations for maximum margin training of structured spaces: margin scaling and slack scaling. While margin scaling has been extensively used since it requires the same kind of MAP inference as normal structured prediction, slack scaling is believed to be more accurate and better-behaved. We present an efficient variational approximation to the slack scaling method that solves its inference bottleneck while retaining its accuracy advantage over margin scaling. We further argue that existing scaling approaches do not separate the true labeling comprehensively while generating violating constraints. We propose a new max-margin trainer PosLearn that generates violators to ensure separation at each position of a decomposable loss function. Empirical results on real datasets illustrate that PosLearn can reduce test error by up to 25%. Further, PosLearn violators can be generated more efficiently than slack violators; for many structured tasks the time required is just twice that of MAP inference.

See Also:

Download slides icon Download slides: icml08_sarawagi_acmmt_01.pdf (463.6 KB)

Download slides icon Download slides: icml08_sarawagi_acmmt_01.pptx (840.5 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: